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SUMMARY

Tactile shape recognition requires the perception of object surface angles. We investigate how neural repre-
sentations of object angles are constructed from sensory input and how they reorganize across learning.
Head-fixedmice learned to discriminate object angles by active exploration with one whisker. Calcium imag-
ing of layers 2–4 of the barrel cortex revealed maps of object-angle tuning before and after learning. Three-
dimensional whisker tracking demonstrated that the sensory input components that best discriminate angles
(vertical bending and slide distance) also have the greatest influence on object-angle tuning. Despite the high
turnover in active ensemble membership across learning, the population distribution of object-angle tuning
preferences remained stable. Angle tuning sharpened, but only in neurons that preferred trained angles. This
was correlated with a selective increase in the influence of the most task-relevant sensory component on ob-
ject-angle tuning. These results show howdiscrimination training enhances stimulus selectivity in the primary
somatosensory cortex while maintaining perceptual stability.

INTRODUCTION

Tactile recognition of the shape of objects is essential for skilled

interactions with the world. Whether with hands (Gibson, 1962)

or with whiskers (Carvell and Simons, 1990), active tactile shape

perception involves purposeful interaction with objects in search

of shape-relevant tactile features (Katz, 1925; Lederman and

Klatzky, 1987). Interactions with these features cause deforma-

tion and stresses within the sensing tissue (Sripati et al., 2006;

Whiteley et al., 2015), driving primary sensory afferent activity

(Adrian and Zotterman, 1926; Coste et al., 2012; Furuta et al.,

2020; Hensel and Boman, 1960; Severson et al., 2017; Zucker

andWelker, 1969). From these patterns of actively gathered sen-

sory input, the brain produces tactile perception, yielding rich in-

ternal representations of the external world (Bensmaia et al.,

2008; Bodegård et al., 2001; Fitzgerald et al., 2004; Fortier-Pois-

son and Smith, 2016; Isett et al., 2018; Pruszynski and Johans-

son, 2014; Pubols and Leroy, 1977). How these representations

are assembled from sensory input, organized within the cortex,

and altered to meet behavioral demands is poorly understood.

A primary component of tactile shape recognition is percep-

tion of the local orientation angle of object surfaces. In humans,

active exploration with individual fingertips provides sufficient in-

formation to perceive surface angles (Pont et al., 1999; Wijntjes

et al., 2009). In mice, the means by which surface angles are

determined with whiskers is unknown. It could require the inte-

gration of touch across multiple whiskers (Brown et al., 2020)

via labeled line (Knutsen and Ahissar, 2009) or latency cues

(Szwed et al., 2003). Alternatively, each whisker could function

like a fingertip, providing sufficient information to perceive sur-

face angles during active touch. The speed and accuracy with

which mammals can identify complex shapes with whiskers (An-

jum et al., 2006; Catania et al., 2008) suggest that each whisker

conveys rich information about local object features, including

horizontal (Cheung et al., 2019; Mehta et al., 2007) and radial

location (Bagdasarian et al., 2013; Pammer et al., 2013; Solomon

and Hartmann, 2011), texture (Jadhav et al., 2009), and surface

angles. Here, we investigate how sensory components of sin-

gle-whisker touch allow the discrimination of object angles.

For object features or sensory components to influence

behavior, they must have neural correlates. Neurons in the pri-

mary somatosensory cortex (S1) of anesthetized rodents encode

direction-specific responses to passive whisker deflections (An-

dermann and Moore, 2006; Bruno et al., 2003; Kremer et al.,

2011; Kwon et al., 2018; Lavzin et al., 2012; Simons and Carvell,

1989). S1 activity is required for active object orientation discrim-

ination with multiple whiskers (Brown et al., 2020). Thus, S1 is a

likely location of the neural representations of object angles and

underlying sensory input. We map representations of deflection

direction and object angles in S1 of anesthetized and behaving

mice. From this, we demonstrate how whisker features of pas-

sive and active touch construct object-angle tuning during active

tactile sensing.

Representations of stimulus features in primary sensory

cortices can change across association learning, although the

nature of these changes varies across studies. Reports from

chronic imaging across stimulus discrimination training show

that the proportion of stimulus-selective neurons increases
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(Chen et al., 2015; Poort et al., 2015), the selectivity of individual

neurons increases (Khan et al., 2018; Poort et al., 2015), or the

representations remain stable (Peron et al., 2015). These differ-

encesmay be due to variations in stimulus control or task design.

Here, we identify which aspects of the cortical representations of

stimulus features and sensory input are plastic and which are

stable across discrimination training. This reveals how training

reshapes both stimulus feature and sensory input encoding in

a task-relevant manner.

RESULTS

Single Whiskers Provide Sufficient Tactile Information
to Discriminate Surface Angles of Touched Objects
Wehypothesized that active touchwith a single whisker provides

mice with sufficient information to discriminate the surface an-

gles of touched objects. To test this hypothesis, we developed

a novel lick left/right whisker-guided object-angle discrimination

task. We trimmed mice to a single whisker (C2) and investigated

whether they could learn to discriminate the angle of a smooth

pole, randomly presented at 45� and 135� from the horizontal

plane on an anteroposterior axis beside the face while head-

fixed (Figure 1A). Mice were water-restricted for motivation.

Following an object sampling period (1 s), correctly licking first

to the right (45� object angle) or left (135�) port during an answer

period (up to 3 s) released a small (2–4 mL) water reward (Fig-

ure S1A). The anteroposterior location of the pole was jittered

(2 mm range) during every trial to ensure that mice were discrim-

inating object angles, rather than detecting the presence of ob-

jects at a particular elevation or location.

The behavior proceeded through acclimation, 2-angle

training, 7-angle testing, and control stages based on the rate

of progress of each mouse (Figure S1B). Operant aspects of

the task were stable across training sessions (Figures S1C–

S1F). Six of 12 mice reached expert performer criteria of >75%

correct in 3 consecutive 2-angle training sessions (Figure 1B).

Before and after training to expert level on 2-angle discrimina-

tion, mice were tested on a complementary 7-angle discrimina-

tion task to gauge their discrimination acuity (45�–135� at 15�

increments, randomly presented). Water rewards matched the

angle orientation of the 2-angle training (45�–75� right, 90�

random, and 105�–135� left port). In the naive 7-angle test,

mice performed at chance (Figure 1C). Two-angle expert mice

performed at 70.0% ± 2.7% on the follow-up 7-angle test. More-

over, there was a significant difference in choice even for 15�

angle differences (Figure 1D). This shows that head-fixed mice

can discriminate object angles with a single whisker to at least

15� of precision without dedicated training in fine-angle discrim-

ination. To exclude the possibility that mice used other unknown

whisker-dependent cues on angle discrimination, we jittered the

radial distance of the object within a 5-mm range for expert mice.

This had no significant effect on 2-angle discrimination perfor-

mance (Figure 1E). Finally, trimming the whisker caused perfor-

mance to fall to chance in all of the mice across 3 days of

whisker-free training, indicating that mice relied on whisker

tactile stimuli to solve the task (Figure 1E).

Which features of whisker-object interactions allow single

whiskers to discriminate object angles? We recorded whisker

motion and object interaction from 2 perspectives at 311 fps,

traced both views, and generated 3-dimensional (3D) recon-

structions of whisker trajectories (average error rate 1.0 ± 0.0

frames per trial; <0.08%) with semi-automated contact detec-

tion (Figures S2A–S2D; STAR Methods, Touch Frame Detec-

tion). From these reconstructions, we quantified 12 sensory

features of whisker-object interactions during the 7-angle test

sessions (Figures 2A, 2B, S2E, S2F; STAR Methods, Whisker

Feature Analysis). These included 6 features of whisker motion

at touch onset: azimuthal angle at base (q), elevation angle at

base (f), horizontal curvature (kH), vertical curvature (kV),

base-to-contact path distance (arc length), and touch count

in a trial. These also included 6 force-generating features of

whisker dynamics during touch: maximum change in azimuthal

(push angle; maxDq) and elevation angle (vertical displacement;

maxDf), maximum change in horizontal (horizontal bending;

maxDkH) and vertical curvature (vertical bending; maxDkV),

slide distance along object, and touch duration during a pro-

tracting whisk (Figures 2A and 2C). Whisker features were

selected from those encoded in S1 or the trigeminal ganglion

(Hires et al., 2015; Peron et al., 2015; Ranganathan et al.,

2018; Szwed et al., 2003, 2006) and their vertical or spatial

counterparts. Whisker features at touch onset are used by

mice to determine the horizontal location of objects (Cheung

et al., 2019), but here they showed little relationship to the

touched object angle (Figure 2C, left 2 columns). In contrast,

most whisker features during touch co-varied with the object

angle in both naive and expert sessions, suggesting a stable

utility for discrimination (Figure 2C, right 2 columns).

Do these 12 whisker features provide sufficient information to

discriminate the object angle to 15� resolution?We built multino-

mial generalized linear models (GLMs) with lasso regularization

to predict 7 object angles using all 12 trial-averaged whisker fea-

tures as input parameters (STAR Methods, Whisker Feature

Analysis – GLM). These GLMs correctly identified the presented

object angles before (65.5% ± 5.2%) and after (74.2% ± 4.5%)

task mastery (Figures 2D and 2E), compared to 14.3% correct

in shuffled data. The average errors in angle prediction were

7.29� ± 1.15� and 5.57� ± 1.23�, respectively, compared to

33�–34� in shuffled data (Figure 2F). There was no significant dif-

ference in prediction capability between naive and expert test

sessions (Figures 2E and 2F), confirming that the sensory input

provided similar angle-discriminative information before and af-

ter training. Ideal observers using these model predictions to

choose between lick right (predicted 45�–75�) and left (predicted

105�–135�) achieved 90.3% correct rate, which is significantly

higher than the performance of mice on those angles in the

expert test sessions (78.8% correct; Figures 2G and S2G). We

conclude that these 12 features provide sufficient information

to accurately discriminate object angles to at least 15�.
To identify the features that are themost important for discrim-

inating object angles, we removed each feature and assessed

the degradation in model fitting (fraction deviance explained;

STARMethods, Whisker Feature Analysis – Feature Importance)

using the remaining 11 features (i.e., ‘‘leave-one-out’’). This

approach identified slide distance and vertical bending as the

2most important features for object-angle prediction (Figure 2H).

The relative importance of these 2 features remained in expert
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sessions (Figure 2H), further supporting the stability in sensory

information content before and after 2-angle training.

Touch Evokes Object-Angle Representations in S1
The ability of mice to discriminate object angles with a single

whisker (Figure 1) implies the existence of neural representations

of touched object angles in the brain.Where are these found, and

is specialized training required for them to emerge? To investi-

gate this, we performed 2-photon volumetric calcium imaging

with GCaMP6s in excitatory neurons of layers 2–4 (L2–4) of the

barrel cortex (alternating blocks of 4 planes at 6–8 volumes/sec-

ond) during naive 7-angle test sessions (n = 12 mice, average of

444 ± 49 active neurons in L2/3 C2, 821 ± 75 in L2/3 non-C2,

136 ± 32 in L4 C2, and 182 ± 38 in L4 non-C2 per mouse;

TetO-GCaMP6s 3 CaMKIIa-tTA; STAR Methods, Two-Photon

Microscopy). Imaging was targeted to the C2 whisker barrel

A

B D

E
C

Figure 1. Mice Can Learn to Discriminate Object Surface Angles with a Single Whisker

(A) Two-choice object-angle discrimination task design (left). Single trial example of touch, imaging, and licking (right).

(B) Learning curves. The error bar represents mean ± SEM number of sessions until mice become experts.

(C) Left lick probability in 7-angle test sessions, before (left) and after (right) learning. Black: individual mice. Red: means ± SEMs (n = 6 expert mice).

(D) Choice dependence on angle difference, in expert 7-angle test sessions. (n = 6; means ± SDs).

(E) Performance of expert mice at different experimental stages (n = 6).

See also Figure S1.
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column and surround via intrinsic signal imaging and calcium re-

sponses during passive deflection. We used suite2p (Pachitariu

et al., 2017) for cell segmentation and neuropil correction and

MLspike (Deneux et al., 2016) for spike inference. Active neurons

were identified by region of interest (ROI) morphology and cal-

cium trace kinetics (STAR Methods, Imaging Data Processing).

A

D

H

E F G

B C

Figure 2. Vertical Bending and Slide Distance Are the Most Important Whisker Features for Object-Angle Discrimination

(A) Whisker features. Dotted: touch start. Solid: touch end. Red: whisker base points. Blue: contact points. AP, anteroposterior; DV, dorsoventral; ML, medio-

lateral.

(B) Seven-angle test task.

(C) Standardized values of 12 whisker features across 7 angles before (orange) and after (cyan) training.

(D) Average performance of multinomial GLMs in predicting object angles from all whisker features, in naive (left) and expert (right) 7-angle test sessions.

(E) GLM object-angle prediction accuracy in naive and expert sessions. Black: each mouse. Red: means ± SEMs. Gray: shuffled angles.

(F) Angle prediction error as in (E).

(G) GLM-based ideal observers versus mice performance in expert 7-angle test sessions.

(H) Whisker feature importance in predicting object angles in 7-angle test sessions. Significant features highlighted.

Data are shown in means ± SEMs (n = 6). p values are from paired t tests.

See also Figure S2.
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To identify touch-responsive neurons, we built an ‘‘object

model’’—a Poisson GLM with lasso regularization for each

neuron that fit the inferred spike counts for each imaging

frame in the session using 5 behavioral classes (i.e., touch,

whisking [Figure S3A], licking, sound, and reward [Figure 3A];

STAR Methods, GLM for Neuronal Activity – ‘Object Model’).

This model separated the effects of touch from non-touch

classes on inferred spikes. Among the active neurons,

A

C

D E F G

B

Figure 3. Angle-Tuned Touch-Responsive Excitatory Neurons Are Distributed across L2–4 Barrel Cortex of Naive Mice

(A) Calcium and inferred spike traces of 20 consecutive trials. Object model fit to inferred spikes from below predictors. Temporal delays and total touch (STAR

Methods, GLM for Neuronal Activity - ‘Object Model’) omitted for clarity.

(B) Average proportion of behavioral classes assigned to each neuron (n = 12 mice). ‘‘Other’’ represents licking, sound, and reward alone or in combination with

touch or whisking.

(C) An example field-of-view (FOV) of 2-photon calcium imaging. Overlay: all touch-responsive ROIs. Color: preferred angle of angle-tuned neurons. Black line:

non-selective touch neurons. White dash: C2 column boundary. Scale bar, 100 mm. (i–iv) Examples (yellow arrows in FOV) of specific-, broad-, complex-tuned,

and non-selective neurons, respectively. (Top) Averaged inferred spikes across trials grouped by object angle. (Bottom) Average number of inferred spikes per

touch grouped by object angle. (ii) is also shown in (A) and Figure 4A.

(D) Normalized activity of all angle-tuned neurons (12 naive mice), sorted by maximally preferred angle.

(E) Proportion of neurons that prefer each object angle.

(F) Proportion of angle tuning types (C) for L2/3 and L4. Uncorrected paired t tests.

(G) Distribution of preferred angle for L2/3 and L4.

Data are shown in means ± SEMs.

See also Figure S3.
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36.8% ± 3.3% were fit by the GLM (i.e., goodness-of-fit >0.1

for the whole session; Figure S3B). Each fit neuron was as-

signed 0, 1, or more classes based on a leave-one-out

approach. Exclusively touch was the most common class

among the fit neurons. Of all of the active neurons, 23.5% ±

2.8% were responsive to touch. Whisking and mixed touch

and whisking made up most of the rest of the fit neurons,

with <1% of active neurons well fit to licking, sound, or reward

(Figure 3B).

We next tested the extent to which touch-responsive neurons

encoded the angle of touched objects. Angle tuning was deter-

mined by one-way analysis of variance (ANOVA) of responses

across angles, and confirmed by a shuffling test tominimize false

positives (STAR Methods, Object-Angle Tuning Calculation). To

prevent potential signal contamination from behavioral outcome

(e.g., water rewards), calculations were restricted to touch

frames before the first lick in the answer period (i.e., the answer

lick). Among touch-responsive neurons, 78.0% ± 2.3% showed

significantly greater touch-evoked activity in response toR1 ob-

ject angles. These angle-tuned neurons were heterogeneously

distributed across L2–4 within and around the primary barrel col-

umn (Figures 3C and S3C).

Angle-tuned responses fell into 4 types based on a post hoc

test (Figure 3C): (1) specific (the preferred angle was signifi-

cantly different from all others), (2) broad (R2 adjacent angles

were similar between themselves but significantly different

from the rest), (3) complex (R2 non-adjacent angles were

similar between themselves but significantly different from the

rest), and (4) non-selective (no response was significantly

different from another). A substantial number of neurons were

selective to each of the 7 angles, tiling the tested angle space

(Figure 3D).

To confirm that angle tuning did not result from behavior clas-

ses other than touch, we compared the angle tuning preferences

from inferred spikes to preferences calculated from the object

model. The population distributions were nearly identical (Fig-

ures S3D and S3E). Angle tuning preferences from touch-only

object models (removing behavioral classes other than touch

from themodel after fitting; STARMethods, Object-Angle Tuning

Calculation) were again nearly identical (Figures S3D and S3E) to

those from inferred spikes, indicating that angle tuning prefer-

ence was independent of neuronal responses to behaviors other

than touch, such as whisking and licking.

Because L2/3 receives strong input from L4 (Hooks et al.,

2011; Lefort et al., 2009), we hypothesized that there would be

a greater proportion of complex angle-tuned neurons in L2/3

than in L4. To our surprise, there was no significant difference

either in the relative proportion of specific, broad, complex,

and non-selective angle tuning (Figure 3F; STAR Methods,

Cortical Depth Estimation) or in the distribution of preferred an-

gles across layers (Figure 3G). We confirmed these results in a

pair of Scnn1a-Tg3-Cre mice that exclusively expressed

GCaMP6s in L4 after injecting Cre-dependent GCaMP6s virus

(LeMessurier et al., 2019; Madisen et al., 2015) (Figures S3F

and S3G). We speculate that this homogeneity in tuning across

layers may be particular to single-whisker tactile exploration as

the lateral integration of touch information across multiple whis-

kers is not present.

Whisker Features That Best Discriminate Object Angles
Also Best Drive Angle Tuning in S1
Our prior analysis showed that object-angle discriminability is

most influenced by 2 tactile features, slide distance and vertical

bending during touch (Figure 2H). We hypothesized that these 2

features would have the greatest influence on the object-angle-

tuned responses found in S1. To test this hypothesis, we first

built a ‘‘whisker model’’ for each touch-responsive neuron (Fig-

ure 4A) by swapping the touch input parameters of the object

model (Figure 3A) with the 12 whisker features we previously

used to predict the object angle (Figures 2C and 2D). These 2

models had performed similarly in fitting session-wide inferred

spikes of touch-responsive neurons (Figure S4A), justifying using

this whisker model for further analysis.

To quantify the impact of eachwhisker feature on angle tuning,

we built angle tuning curves based on the output of the whisker

model. On average, there was a high correlation (R = 0.78 ± 0.02)

between angle tuning from inferred spikes and the whisker

model (Figure S4B). Removing behavior classes other than

whisker features from the model (i.e., whisker-only model) had

a negligible impact on this correlation (R = 0.78 ± 0.02; Fig-

ure S4B), demonstrating that angle tuning is primarily con-

structed from these 12 whisker features. To determine the

impact of each feature in establishing angle tuning, we calcu-

lated the reduction in correlation between observed angle tuning

curves and these whisker-only model reconstructions when sin-

gle whisker features were removed from the model. We highlight

this process in 2 example neurons whose tuning was highly

dependent on slide distance or vertical bending (Figure 4B).

Across the population, whisker features during touch had

much more influence than features at touch onset (Figure 4C).

Reflecting their relative importance in the 7-angle classification

(Figure 2H), vertical bending and slide distance had a greater

average impact on angle tuning than any other feature (Figures

4C and S4C).We conclude that object-angle tuning in S1 primar-

ily reflects the angle-discriminative features of whisker dynamics

during object contact.

We examined whether a whisker feature’s impact on tuning

was dependent on a neuron’s preferred object angle (Figure 4D).

Vertical bending had a higher impact on angle tuning in neurons

that preferred extreme angles. Slide distance had a higher

impact on neurons preferring intermediate angles (75�–105�).
Horizontal bending also emerged as an influential feature for

these intermediate angles. Thus, the diversity of angle tuning

preferences reflect an angle-specific relationship with whisker

features.

Is each neuron sensitive to only 1 whisker feature, or do mul-

tiple features combine to create a higher-order representation

of the external world? To answer this, we examined the number

of whisker features that had a strong impact on angle tuning in

each neuron. We defined strongly affecting features as those

whose removal reduced the correlation between model and

observed angle tuning curve by at least 0.1 (Figure S4D). Across

the population, 67.5% of angle-tuned neurons had at least 1

whisker feature with a strong impact on angle tuning, 19.3% ±

0.9% of neurons had R2 features, and 5.1% had R3 features

(Figure S4D). These multi-feature neurons were unevenly distrib-

uted across angle preferences. Neurons preferring intermediate
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angles (75�–105�) were more likely to be strongly affected by >1

whisker feature (Figure 4E). The proportion of multi-feature neu-

ronswas similar across layers (Figure S4E).We conclude that the

diverse selectivity of S1 neurons for features of the external world

(e.g., object angle) is established by the heterogeneous sampling

of R1 features of sensory input (e.g., whisker features).

To what extent do active touch processes influence object-

angle tuning? To address this question, we mapped calcium re-

sponses to passive whisker deflections in 8 directions under light

isoflurane anesthesia (Figures 5A–5C) in 9mice before their naive

7-angle active test sessions (Figures 5D–5F; 5.8 ± 4.3 days

before; 72 planes from L2–4). Across all of the passive deflec-

tion-responsive neurons, the 8-angle vector sumof deflection re-

sponses was broadly distributed (Figure S5A). However, the

average response to vertical deflections was 28.8% higher than

horizontal deflections (Figure S5B), which is consistent with a

recent report in L2/3 of S1 in mice (Kwon et al., 2018). In a subset

of planes (37 planes over 9 mice), we were able to identify the

same neurons in matched fields of view between the passive

deflection sessions and naive 7-angle test sessions (Figure 5G).

Of 2,532 neurons active in both sessions, 1,059 neurons

(41.8%) were significantly tuned to the passive deflection direc-

tion, while 502 neurons (19.8%) were significantly tuned to the

object angle (Figure 5H). Only 64.1% (322/502) of these object-

angle-tuned neurons exhibited tuning to the deflection direction,

while only 30.4% (322/1,059) of the deflection-direction-tuned

A

C D E

B

Figure 4. Vertical Bending and Slide Distance Best Explain Object-Angle Tuning Curves of S1 Excitatory Neurons

(A) Whisker model fit to same neuron and trials as in Figure 3A. Only 3 whisker features shown for clarity.

(B) Single-neuron examples of angle tuning from inferred spikes and whisker model variations. (Left) Standardized response to object angle from inferred spikes

(red), whisker-only model (gray), vertical bending-removed model (dashed green line), and slide distance-removed model (dashed blue line). (Right) Angle tuning

curve correlation between each model and inferred spikes. Example neurons’ angle tuning is dependent on slide distance (top) or vertical bending (bottom).

(C) Mean impact of each whisker feature on angle tuning across the population.

(D) Mean impact of each whisker feature during touch on angle tuning, grouped by preferred angles.

(E) Proportion of multi-feature neurons within each tuned angle. ANOVA p < 0.001 (F6,76 = 4.85). Paired t test between mean proportion of 75�–105� and the rest.

Data are shown in means ± SEMs.

See also Figure S4.
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A

D

H

J

K

I

E F

B C G

Figure 5. Weak Relationship between Passive Whisker Deflection-Direction and Object-Angle Tuning

(A) C2 whisker piezo deflection with glass capillary under light isoflurane anesthesia.

(B) Example neuron response to passive whisker deflection (red arrow in G), sorted by deflection direction.

(C) Passive deflection-direction tuning curve from (B). Means ± SEMs of DF/F0.

(D) Active touch naive 7-angle test sessions.

(E) Neuronal response during active object touch, sorted by object angle. Same neuron as in (B).

(legend continued on next page)
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neurons were also tuned to the object angle. The partial overlap

between these 2 classes shows that tuning to the passive deflec-

tion direction is neither necessary nor sufficient to produce ob-

ject-angle-tuned responses during active touch.

Within co-tuned units, there was a weak relationship between

the passive deflection direction and the object angle preference.

The average response to downward deflections was slightly

higher for neurons preferring the 45� object angle (Figure 5I).

Similarly, 45�-preferring neurons had a tendency to prefer

down and back passive deflections, while 135�-preferring neu-

rons had a slight bias to up and back (Figures 5J, 5K, and

S5C). This is consistent with the expected direction of forces

applied during the active touch of those object angles. However,

the relatively small magnitude of the bias and the diversity of pas-

sive deflection-direction preferences across object-angle tuning

leads us to conclude that active processes during object angle

discrimination profoundly reshape deflection-direction tuning

preferences across the S1 population.

S1 Maintains Angle Tuning Preferences Despite
Changes in Active Ensemble Membership across
Training
Mice improve discrimination task performance with training (Fig-

ure 1), and mice have a robust representation of object angles in

S1 neurons (Figure 3). Discrimination performance could be

enhanced by changes in the object angle representations in

S1. However, primary sensory cortical representations may

need to remain steady to support perceptual stability. We inves-

tigated the relationship between discrimination training and

object angle representations in S1 by comparing the activity pat-

terns of the same neurons in 7-angle test sessions before and af-

ter 2-angle discrimination training to expert performance (11,351

neurons from 6 mice with paired sessions separated by an

average of 16 ± 2 sessions; Figures 6A and S6; STAR Methods,

Matching Planes across Sessions).

The most prominent change was in the composition of the

ensemble of active neurons during a session. Only 39.1% ±

3.8% of tracked neurons were active in both naive and expert

sessions (i.e., persistent neurons; Figure 6B), with more su-

perficial imaging planes showing slightly higher turnover

than deeper planes (Figure S7A). The proportion of turnover

was largely independent of touch-responsive category (i.e.,

non-touch, non-selective touch, angle-tuned touch; Figures

S7B and S7C). Persistent neurons had significantly higher ac-

tivity than transient neurons before and after training

(Figure 6C).

Despite the high turnover rate, the proportion of active neu-

rons that were angle tuned was stable (Figure 6D). There was

also no significant change in the proportion of preferred object

angles before and after training (Figures 6E and 6F). This was

true in both L2/3 and L4 (Figure S7E) and for both for the transient

and persistent populations (Figure S7F). Moreover, the persis-

tently angle-tuned neurons had stable angle preferences, with

83.8% ± 1.7% changing their preferred angle %15� (Figure 6G).

Thus, despite the high turnover of active ensemble membership,

L2–4 of S1 provide a similar pool of object angle preferences to

draw from, which could support perceptual stability with appro-

priate population sampling.

Angle Selectivity Increases in Neurons Tuned to Trained
Object Angles
Were there any changes in the neural representations of object

angles in S1 that could support improved discrimination perfor-

mance? Across mice, the angle selectivity of touch neurons

significantly increased following 2-angle training (Figure 7A).

This was due, in part, to a significant reduction in the proportion

of non-selective touch neurons in S1 (Figure 7B). A greater pro-

portion of non-selective touch neurons became angle tuned with

training than vice versa (Figure 6B). The selectivity increase was

also seen in angle-tuned neurons, but only in neurons that

preferred 45� or 135� (Figures 7C, 7D, and S7G). Thus, changes

in object feature encoding were specific to trained angles, rather

than a general sharpening of object-angle tuning.

How was this sharpening in angle tuning achieved? Since ob-

ject angles can be discriminated by whisker features (Figure 2),

and they are used to create object-angle tuning in S1 neurons

(Figure 4), we suspected that 2-angle discrimination training (Fig-

ure 8A) may change the encoding of whisker features in S1. Dur-

ing 2-angle training, vertical bending had distinct distributions for

45� and 135� trials, while slide distance did not (Figure 8B). After

training, vertical bending discriminated choice on 2-angle ses-

sions, while slide distance did not (Figure 8C). We built binomial

GLMs to predict either object angles or choice fromall 12whisker

features. As expected from the 7-angle prediction (Figures 2D-E),

object angles could be well predicted from these 12 whisker fea-

tures before and after training (Figure 8D). However, choice could

be predicted only in expert sessions (Figure 8D), reflecting the

learned association between object angles and choices after

training. Using leave-one-out methods, we found that vertical

bending was the dominant choice-predictive feature in expert

2-angle training sessions (Figure 8E). This remained true in choice

prediction in expert 7-angle test sessions (Figure S8A),

(F) Object-angle tuning curve (means ± SEMs) from (E).

(G) Example FOV and overlaid ROI maps from matched anesthetized (top) and awake (center) experiments. The white neurons (bottom) are active in both

sessions.

(H) Assortment of passive deflection-direction-tuned (magenta), active object-angle-tuned (green), and tuned in both sessions (co-tuned; gray), among all

matched co-active neurons (white in G).

(I) Mean deflection-direction tuning curves of all co-tuned neurons (gray), overlaid with those preferring 45� (red), 75�–105� (green), or 135� (blue) object angle
during naive 7-angle test sessions. Lighter colors are SEMs.

(J) Distribution of mean passive deflection response direction of all co-tuned neurons (gray), or preferring 45� (red), 75�–105� (green), or 135� (blue) object angle
during naive 7-angle test sessions.

(K) Proportion of mean passive deflection response direction within neurons that preferred 45� or 135� object during naive 7-angle test sessions. Passive di-

rections grouped by upward (60�–90�; red), downward (270�–300�; blue), and other directions (gray).

See also Figure S5.
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A

C

D E F G

B

Figure 6. Stable Object Angle Preference Despite Active Ensemble Turnover after 2-Angle Discrimination Training
(A) Example FOV (same as Figure 3) of active ROIs from 7-angle test sessions before (left) and after (center) 2-angle training. (Right) Overlay with persistently

active in white. (Bottom left) Magnified view of white dashes above. Scale bars: 100 mm (top), 50 mm (bottom).

(B) Classification flow of 11,351 active neurons in 6 mice from naive to expert 7-angle test session.

(C) Cumulative proportion of rate of inferred spikes from persistent (active in both sessions) or transient (active in only 1) neurons in naive or expert 7-angle test

sessions. (Inset) Mean rate of inferred spikes with paired t tests.

(D) Proportion of active neurons that were angle tuned in naive and expert 7-angle test sessions. Paired t test.

(legend continued on next page)
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suggesting that mice applied the same discrimination rule

learned in training to those test sessions. Thus, while both slide

distance and vertical bending were useful for 7-angle decoding

(Figures 2C, H) and neuronal tuning (Figure 4C), only 1 of those

features, vertical bending, was relevant to the trained task.

The relevance of whisker features for 2-angle discrimination

(Figure 8B) was correlated to training-related changes in their en-

coding during 7-angle test sessions (Figure 8F). Training signifi-

cantly increased the importance of vertical bending in predicting

inferred spike trains of 7-angle test sessions, and significantly

decreased the importance of slide distance (Figures 8G and

S8B). It also significantly increased the impact of vertical

bending on angle tuning, while significantly reducing the impact

of slide distance (Figures 8H and S8C). Finally, training also

increased the proportion of neurons where vertical bending

had amajor impact on angle tuning, while decreasing the propor-

tion of slide distance (Figures S8D and S8E). We conclude that

discrimination training selectively enhanced the cortical repre-

sentation of task-relevant features of sensory input while de-

grading the representation of task-irrelevant features, resulting

in improved neural selectivity for trained stimuli that persisted

in related discrimination tasks.

DISCUSSION

Calcium imaging allowed us to observe the reorganization of

neural representations of object angles and sensory features

across weeks of training. However, this approach has limita-

tions. Whisker dynamics and single touch responses in S1,

particularly L4, are much faster than the indicator decay rate

and imaging volume rate (Chen et al., 2013; Hires et al., 2015).

This limits ourmapping to a ‘‘rate code’’ for object angle and sen-

sory features averaged across touches, while spike timing and

synchrony could also play significant roles in driving perception

and behavior (Zuo et al., 2015). We used a GCaMP6s mouse line

(Wekselblatt et al., 2016) that has high single-spike SNR, lowDF/

F0 variability, and a linear relationship in calcium response to 1–4

action potentials within a 200-ms window in vivo (Huang et al.,

2020), which is well suited for the observed firing rates of excit-

atory neurons in L2–4 of S1 during active touch (Hires et al.,

2015; O’Connor et al., 2010). However, GCaMP6s is dim in the

absence of activity, so determining whether a neuron fell silent

or simply went out of focus required corroborating evidence.

Ourmatcheddepth andoptical sectioning calibration (Figure S6),

inferred spikes per session distribution (Figure S7D), and consis-

tency with prior reports of turnover (Chen et al., 2015; Gonzalez

et al., 2019; Ziv et al., 2013) support that our observed turnover in

active ensemble membership across training reflects true

changes in population activity.

One of our goals was to investigate how object feature and

sensory input encoding changes during stimulus-reward associ-

ation learning. Possible confounders include activity changes

due to operant learning or motor strategy refinement and shifts

in reward anticipation or attention across training. We controlled

(E) Normalized activity of all angle-tuned neurons from 6 expert mice in naive and expert 7-angle sessions, sorted by maximally preferred angles.

(F) Distribution of preferred angles in naive and expert mice.

(G) Distribution of change in preferred angles in persistently angle-tuned neurons across training (black bars). Gray bars: shuffled data.

Data are shown in means ± SEMs.

See also Figures S6 and S7.

A B C D

Figure 7. Object Angle Discrimination Training Enhanced Angle Selectivity of S1 Neurons Only for Trained Angles

(A) Mean angle selectivity across training, from all touch-responsive neurons. Black circles: each mouse. Paired t test.

(B) Proportion of non-selective touch-responsive neurons across training. Black: each mouse; red: mean. Paired t test.

(C) Mean angle selectivity of neurons from naive versus expert sessions, respectively, binned by preferred object angle. Two-sample t tests (n = 492 and 409 in

45�, 239 and 150 in 60�, 111 and 91 in 75�, 139 and 143 in 90�, 107 and 74 in 105�, 122 and 156 in 120�, and 471 and 349 in 135�).
(D) Average object-angle tuning curves for naive and expert sessions, for neurons preferring 45� and 135�.
Data are shown in means ± SEMs.

See also Figure S7.
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for operant learning by stepwise training (Figure S1B), mapping

neural responses only after operant task components were so-

lidified (Figures S1D–S1F). In contrast to prior tactile tasks

(Chen et al., 2015; Peron et al., 2015), object-angle discrimina-

tion resulted in stable motor engagement and gathering of sen-

sory information before and after training (Figure 2). Compared

to go/no-go tasks (Chen et al., 2015; Khan et al., 2018; Poort

et al., 2015), our 2-choice task balanced reward anticipation

across the presented stimuli and disambiguated choice from

attentional lapses. In this context, the proportion of active neu-

rons that discriminated task-relevant object features was stable

across training (Figure 6D), consistent with Peron et al. (2015),

but in contrast to Chen et al. (2015), Khan et al. (2018), and Poort

et al. (2015). Training on 2-angle discrimination while testing on

7-angles revealed that increased neural selectivity to the trained

stimulus feature (Khan et al., 2018; Poort et al., 2015) was spe-

cific to the stimuli presented during training (45� and 135�), and
did not generalize across stimulus feature class (object angle;

Figure 7C). Tracking how these changes are distributed across

S1 neurons that target different brain regions (Chen et al.,

2015; Yamashita and Petersen, 2016) across phases of learning

could reveal distinct circuit mechanisms for refining shape

perception and tactile-guided behaviors.

How is representational stability maintained in the face of

active ensemble turnover (Figure 6)? The simplest explanation

is that the neurons in S1 maintain object feature preferences

across learning, independent of active ensemble participation.

This would be consistent with primary visual cortex neurons

maintaining stimulus selectivity before and after monocular

deprivation (Rose et al., 2016) and CA1 neurons maintaining

place preference across weeks despite variation in active

ensemble participation (Ziv et al., 2013; Gonzalez et al., 2019).

A

F G H

B C D E

Figure 8. Two-Angle Discrimination Training Enhanced the Influence of the Reward-Relevant Whisker Feature on Neural Activity and Angle

Tuning

(A) Two-angle training sessions.

(B) Feature distributions of vertical bending (left) and slide distance (right) for touching 45� (blue) or 135� (red) object angles in 2-angle training sessions. (Top)

Naive training sessions; (bottom) expert training sessions.

(C) Same as in (B), except for choice. Cyan: trials with right choice; magenta: trials with left choice.

(D) Performance of object angle (open circles) and choice decoder (filled circles) in 2-angle training sessions. MCC, Matthew’s correlation coefficient.

(E) Whisker feature importance onGLM-based choice prediction for expert 2-angle training sessions. Themost important feature, vertical bending, is highlighted.

(F) Seven-angle test sessions.

(G) Feature importance for fitting session-wide neuronal activity (inferred spikes) between object-angle-tuned neurons in naive (orange; n = 1,681) and expert

(cyan; n = 1,372) 7-angle test sessions. Only whisker features during touch are shown.

(H) Impact on angle tuning between object-angle-tuned neurons in naive (orange; n = 1,681) and expert (cyan; n = 1,372) 7-angle test sessions. Only whisker

features during touch are shown.

Data are shown in means ± SEMs. p values are from two-sample t tests.

See also Figure S8.
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This possibility is supported by the remarkable stability of angle

preference in persistently angle-tuned neurons (Figure 6G). The

combination of active ensemble variability with stable object

preference could reflect the changing intrinsic excitability of

excitatory neurons (Barth et al., 2004; Desai et al., 1999; Yiu

et al., 2014) or local inhibitory networks that enforce firing rate

homeostasis (Dehorter et al., 2015; Gainey et al., 2018; Goldberg

et al., 2008). As long as population tuning preferences remain

stable (Figures 6E–6G), changes in activity may average out

and allow downstream neurons to maintain consistent

selectivity.

Why were 45� and 135� overrepresented in the S1 population

tuning? Preferred angle distributions were unaffected by 2-angle

training, so the overrepresentation does not reflect a preference

shift toward reward-predictive stimuli. It is possible that all an-

gles 0�–180� are equally represented, with <45� and >135�

pooled into the 2 most extreme bins, or deflections out of the

plane of whisking and body movement could be more likely to

represent behaviorally relevant objects. The significantly larger

average responses and bias in preferred directions to vertical

compared to horizontal passive deflections (Figures 5I, S5A,

and S5B) provide some support for this possibility. Combining

this weak directional bias in passive tuning with active touch pro-

cesses, such as sticking and slipping along the pole (Huet and

Hartmann, 2016; Isett et al., 2018), could further increase the

prevalence of tuning to extreme angles, since they are associ-

ated with the longest slide distances (Figure 2C).

Tactile shape perception is normally accomplished by the

simultaneous touch of multiple digits or whiskers along a contour

during free exploration. To understand tactile 3D shape percep-

tion requires knowing the capability and limitations of single

touch sensors in local surface perception and how they are en-

coded in the brain. Humans can perceive surface angles with

single fingertips (Pont et al., 1999;Wijntjes et al., 2009). However,

the central representations of surface angles remain unknown.

We show that mice are also able to discriminate surface angles

with single whiskers and map the S1 representations involved

in this perceptual process. However, important questions

remain. Whether the spatial pattern of follicle strain and mecha-

nosensor activation evoked by whisker motion and bending is

sufficient to explain the S1 representation, or if efference copy

also shapes it remains to be explored. A comprehensive under-

standing of tactile 3D shape representation and perception will

require investigating how signals frommultiple whiskers are inte-

grated in S1 and beyond, as well as the identification of where

and how body orientation invariant shape representations

emerge.
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Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Samuel Andrew Hires

(shires@usc.edu).

Materials Availability
This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV1-Syn-Flex-GCaMP6s-WPRE-SV40 Addgene 100845-AAV1

AAV1-CamKII-H2B-tdTomato-WPRE

(customized from existing AAV)

Vector Biolabs VB5393

Experimental Models: Organisms/Strains

Mouse: B6;DBA-Tg(tetO-GCaMP6s)

2Niell/J

Jackson Laboratory RRID:IMSR_JAX:024742

Mouse: B6;Cg-Tg(Camk2a-tTA)

1Mmay/DboJ

Jackson Laboratory RRID:IMSR_JAX:007004

Mouse: B6;C3-Tg(Scnn1a-cre)3Aibs/J Jackson Laboratory RRID:IMSR_JAX:009613

Software and Algorithms

MATLAB MathWorks RRID:SCR_001622

Scanbox Dario Ringach, UCLA https://scanbox.org

BControl Carlos Brody https://brodylabwiki.princeton.edu/

bcontrol/index.php?title=Main_Page

Janelia whisker tracker Clack et al., 2012 https://wiki.janelia.org/wiki/display/

MyersLab/Whisker+Tracking

glmnet (MATLAB) Friedman et al., 2010 RRID:SCR_015505

Suite2p Pachitariu et al., 2017 RRID:SCR_016434

MLspike Deneux et al., 2016 https://github.com/MLspike

CircStat (MATLAB) Berens, 2009 RRID:SCR_016651

Other

Two-photon microscope Neurolabware N/A

NIR laser (for two-photon microscope) Spectra-physics InSight DS+

Arduino Uno Arduino Cat#A000066

Servomotor TowerPro Cat#SG92R

Pneumatic slide Festo Cat#170496

Motorized actuator Zaber Cat#NA11B30-T4

CMOS camera Basler Cat#acA800-500um

Telecentric lens Edmund optics Cat#58-259

StreamPix Norpix RRID:SCR_015773

Solenoid valve Lee Company Cat#LHDA1233215H

Stripe piezo actuator APC International Ltd. N/A

Piezo driver A.A. Lab systems Ltd. Cat#A-301

ll
Article

e1 Neuron 108, 1–15.e1–e8, December 9, 2020

Please cite this article in press as: Kim et al., Behavioral and Neural Bases of Tactile Shape Discrimination Learning in Head-Fixed Mice, Neuron (2020),
https://doi.org/10.1016/j.neuron.2020.09.012

mailto:shires@usc.edu
https://scanbox.org
https://brodylabwiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://brodylabwiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://wiki.janelia.org/wiki/display/MyersLab/Whisker+Tracking
https://wiki.janelia.org/wiki/display/MyersLab/Whisker+Tracking
https://github.com/MLspike


Data and Code Availability
The datasets generated during this study and code used to analyze data and generate figures are available at https://github.com/

hireslab/Pub_S1AngleCode.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Weused 2-4months oldmale (n = 4) and female (n = 8) CaMKII-tTA3 tetO-GCaMP6smice (#007004 and #024742, respectively; The

Jackson Laboratory), and 2 male Scnn1a-Cre mice (#009613; The Jackson Laboratory). Mice were maintained on a 12:12 reversed

light:dark cycle. Six mice were singly housed after surgery due to the incompatibility with cage mates. After water restriction, health

status was assessed every day following a previously reported guideline (Guo et al., 2014). All procedures were performed in accor-

dance with the University of Southern California Institutional Animal Care and Use Committee Protocol 20731.

METHOD DETAILS

Cranial window surgeries
Before each surgery, buprenorphine-SR and ketoprofen were injected subcutaneously at 0.5 and 5 mg/kg, respectively. Animals

were anesthetized using isoflurane (3% induction, 1%–1.5% maintenance). On the first surgery, a straight head bar was attached

on the skull. We performed intrinsic optical signal imaging (ISI) of the C2 whisker representation using a piezo stimulator and

635 nm LED light under light isoflurane anesthesia (0.8 – 1.0%) at least 3 days after the surgery. All whiskers except C2 were trimmed

before ISI and remained trimmed throughout the experiments. On the second surgery, a 2 3 2 mm square of skull centered at C2

location was removed and replaced by a glass window which was made by fusing a 2 3 2 mm glass and a 3 3 3 mm glass (both

0.13-0.17 mm thickness) with ultraviolet curing glue (Norland optical adhesive 61, Norland Inc.). We confirmed C2 location about

3 days after the cranial window surgery with a second ISI session. Water restriction started 3-10 days after the second ISI.

Virus injections
In 3 male and 1 female CaMKII-tTA 3 tetO-GCaMP6s mice, AAV1-CaMKIIa0.4-NLS-tdTomato-WPRE (custom made by Vigene

Biosciences, MD, USA) was injected during the cranial window procedure. For Scnn1a-Cre mice, AAV1-Syn-Flex-GCaMP6s-

WPRE-SV40 (a gift fromDouglas Kim&GENIE Project (Addgene viral prep # 100845-AAV1; http://addgene.org/100845; RRID: Addg-

ene_100845)) was injected. We pulled a glass capillary (Wiretrol� II, Drummond) into 10-20 mm in tip diameter using a micropipette

puller (Model P-97, Sutter Instrument), and beveled the tip to about 30�. After filling the capillary with mineral oil (M5904, Sigma-Al-

drich), we withdrew virus solution (titrated to 1012 GC/mL using 0.001%Pluronic F-68 in saline) from the tip using a plunger. Care was

taken not to introduce an air gap betweenmineral oil and virus solution. We injected virus solution at the 4 corners of a 200 mmsquare

whose center matched to that of identified C2 region, 50 nL per site over 5 min. We waited for 2 min after each virus injection before

withdrawing. Depth of the pipette tip was 400 mm for Scnn1a-Cre mice, and 200 and 400 mm for others.

Behavioral task
We developed a 2-choice task for object surface angle discrimination with a single whisker (Figures 1 and S1). In the 2-angle training

sessions, a smooth black pole with 0.6 mm diameter (a plunger for glass capillary, Wiretrol� II, painted with black lubricant, industrial

graphite dry lubricant, the B’laster Corp.) was presented in each trial on the right side of a head-fixedmouse, coming from the front, with

an angle of either 45� or 135�. The pole was positioned 5-8 mm laterally from the face. The lateral distance from the face was kept

consistent within a mouse across sessions, except for ‘‘Radial jitter’’ sessions, where it varied 0-5 mmmore lateral from the trained po-

sition. The rotation axis of the polewas orthogonal to the body axis in the horizontal plane, and the anglewas rotated in the sagittal plane

such that 45� (pointing caudal) made the whisker move down upon protracting sliding touch, while 135� (pointing rostral) made it go up

(Figure 1A). Micewere given 3-4 ml of water reward for correct trials (i.e., when they licked the right lick port for 45� and left for 135�). The
amount of water rewardwas adjusted to target 600 trials performed per session (553 ± 147 trials, mean ± SD).Wrong answers were not

punished, except for a few sessions of impulsive licking (5.3 ± 3.1 sessions in 4 mice, mean ± SD). In these sessions we punishedmice

with 2 s time-outs for wrong answers. The time-out could be re-triggered by additional licks during this time-out period. Pole presen-

tation was followed by a 1 s sampling period, where licking was ignored, and then a 3 s answer period, where licking triggered trial

outcome. The pole retracted 1 s after an answer lick, defined as the first lick during the answer period time. The behavioral task was

controlled and time-synced by MATLAB-based BControl software (C. Brody, Princeton University). Pole rotation was controlled using

an Arduino and a micro servo (SG92R, TowerPro), and planar pole position was controlled by a set of 2 motorized actuators (Zaber),

each moving in anterior-posterior axis and medio-lateral axis, respectively. The pole was presented using a pneumatic slide (Festo).

We trained mice in a stepwise manner to control for operant learning (Figures S1B–S1F). After 7-10 days of water restriction, we

confirmed C2 location and defined imaging field-of-view (FOV) and planes (below, Two-Photon Microscopy section). We then accli-

mated mice to head fixation and water reward from a lick port. After 1-3 days, each mouse underwent 1-2 days of sound cue-pole-

water reward association training (‘‘Pole timing’’ sessions). A piezo sound cue was given at the beginning of each trial, and water

reward was given upon mouse’s licking 1 s after the pole presentation. At this training point, a single lick port was present at the cen-
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ter, and the angle of the pole was 90�. Chronic two-photon imaging started from this session (reference FOV from this session; see

Matching Planes across Sessions (Figure S6)). Once they learned the structure of task and reward timing (<5% of miss trials in more

than 100 consecutive trials; up to 2 sessions), we introduced 2 lick ports (separated by 3 mm). Learning rates (Figure 1B) were

measured from this session.

To reduce biased licking to one side of the lick ports, we varied the probability of each pole presentation based on correct rate

history. Consecutive same-angle presentation was limited to 5 times. We introduced 0-2 mm of jitter in anterior-posterior pole po-

sition to prevent solving the task by the presence of the pole at specific spatial coordinates. The pole was presented near the coronal

plane of the C2 whisker base. We adjusted pole height in eachmouse depending on their whisking geometry to approximately center

the distribution of touch points to 0� whisker azimuth.

Mice were deemed experts when their performance surpassed 75% correct rate for 3 consecutive sessions. Miss trials (11.7 ±

10.8%, mean ± SD) were ignored for performance calculations, but included in other analyses (for object-angle tuning and whisker

feature encoding). Before and after learning, we tested discrimination and angle tuning representations with varying object angles,

45� to 135� at 15� intervals (7-angle sessions, Figures 1C and S1B). The 90� pole was randomly rewarded. In these test sessions, we

used pseudo-random pole presentations, to evenly distribute the number of trials in each object angle.

Whisker video recording and tracking
We used a CMOS camera (Basler acA800-500um), a telecentric lens (0.09X½’’ GoldTLTM #58-259, Edmund optics), a mirror and an

LED backlight to simultaneously image both front- and top-views of the whisker (Figures S2A and S2B). The mirror was tilted in two

axes: 45� relative to the horizontal plane to capture top-down view (Figure S2B), and 13.3� relative to the coronal plane to capture the

whole whisker in front view (Figure S2A). The latter is corresponding to the angle between mouse’s face and body axis. We removed

hair from right side face and upper front trunk to prevent hair from blocking front view whisker, using a hair removal lotion (Magic

razorless cream shave, Softsheen-Carson). We recorded whisker motion using StreamPix software (NorPix Inc.), and used BControl

and Ardunio to trigger the camera in 311 Hz (about 103 of two-photon resonance imaging frequency of a single plane).

We used the MATLAB version of Janelia whisker tracker (Clack et al., 2012) to track the whisker. We masked whiskers 1 mm from

the face to minimize tracking errors near the face (Pammer et al., 2013), both in front and top-down views. Based on the property of

telecentric lens and the geometric relationship of two views, we could reconstruct 3D whisker shape. The reference points to match

the two views were whisker base points, which are the intersections between the whisker and the face mask in each view. In each

frame, we visited each point of top-down view whisker trace, and matched the corresponding point in the front view based on the tilt

angle of themirror, resulting in 3D Cartesian coordinates (Figure S2C). Touch point, arc length along the whisker from themask to the

touch point, and whisker curvature at 3 mm along the whisker from the mask were calculated after 3D reconstruction.

Touch frame detection
Touch detection on a vertical pole (90�) can be accomplished from pole-to-whisker distance and whisker curvature with semi-auto-

mated (Pammer et al., 2013) or automated (Severson et al., 2017) curation. Thismethod cannot be applied for angled poles, however,

because the shadow of the angled pole precludes pole-to-whisker distance calculation. Therefore, we devised a new analytic

method for detecting touch frames from simultaneous 2-view whisker videography.

Non-touch frames can be detected based on the two view frame-by-frame changes in whisker position relative to the pole angle,

using constraints imposed by pole geometry. For example, when the pole is tilted at 45� angle (Figure 1A; blue pole), if the whisker-

pole intersection point moves back at the top-view and does not go up at the front view, one can be sure the whisker is not in contact

with the pole at the latter frame. If the whisker-pole intersection point moves up at the front view, it is not determined from the video.

To visualize this concept, we defined 2 artificial axes from the whisker video: one (x) along the top-view pole edge and the other (y)

along the front-view pole edge (Figure S2D). Origins of each axis could be defined at any arbitrary points along each pole edge, and

we defined them at the edges of the image. For each frame we calculated the intersection point between the whisker and the pole

edge as an (x,y,z) triple, where x equals the intersection between whisker trace and pole edge along the pole axis in the top-view, y is

the equivalent for the front-view, and z is the position of pole base. Plotting the (x,y,z) intersection point for each frame of the same

presented object angle in the session revealed an empty space corresponding to the pole (Figure S2D, red arrow) flanked by two

dense parallel hyperplanes (‘touch planes’) produced by protraction (touching the rear side of the pole) or retraction touch (touching

the front side of the pole). Frameswhere the intersection point (x,y,z) fell upon either ‘touch planes’ were candidate touch frames. The

touch plane orientation was calculated by finding the two angles which maximized the variance in the location of the projection of all

intersection points onto a rotating hyperplane, using Radon transform twice sequentially. The plane was then translated in its orthog-

onal direction to maximize the number of intersection points that fell within the plane.

We verified this approach by comparing the touch frame detection between our method and two-dimensional whisker tracking

from the top-view of the 90� pole. The overall match was 98.21 ± 0.92% of touch frames, 0.50 ± 0.21% false positive, 1.28 ±

0.85% false negative, with 1.43 ± 0.57 frames of touch onset error and 1.45 ± 0.56 frames of touch offset error (mean ± SD, n = 5).

Whisker feature analysis
We investigated which whisker variables (i.e., sensory input components), among 12 whisker features listed in the Results section,

might have influenced mice to discriminate the pole angle and to decide which side to lick.
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The definition and calculation of each whisker feature (Figures 2A–2C) is as follows:

1. Azimuthal angle at base (q; in �): The angle of whisker at base compared to the mediolateral axis, when looked down at from

the top. Whisker at base is where the whisker intersects with the face mask. Positive value means more protracted.

2. Vertical angle at base (4; in �): The angle of whisker at base compared to the mediolateral axis, when looked back at from the

front. Positive value means higher, more dorsal position.

3. Horizontal curvature (kH; in mm-1): Curvature of top-down projected whisker shape, at 3 mm away from the whisker base

along the 3D shape of the whisker. Negative value means that the apex of the curve is pointing anterior.

4. Vertical curvature (kV; in mm-1): Curvature of the whisker at 3 mm away from the whisker base along the 3D shape of the

whisker, when looked back from the front at the angle of q, i.e., the plane of the whisker projection is parallel to the azimuthal

angle at follicle (q). We used this projected shape of whisker to calculate kV. Positive value means the apex of the curve is

pointing upward.

5. Arc length (in mm): Length of the whisker segment between the whisker base and the whisker-pole intersection point.

6. Touch count (number of protraction touches in a trial, for behavior analyses in Figures 2 and 8; number of protraction touches

in a frame, for fitting neural activity): In the rare case of multiple protraction whisks while in continuous contact with the pole,

each whisk was as a protraction touch. A protraction whisk is defined by a whisk of amplitude >2.5� (See ‘active whisking’ in

section GLM for Neuronal Activity - ‘Object Model’).

7. Push angle (maximum change in azimuthal angle; maxDq; in �): max(q(t) - q(0)), where q(0) means q at touch onset, and q(t)

means q during each ‘protraction touch’ frame at time t. The value is always positive because of the definition of ‘protraction

touch’.

8. Vertical displacement (maximum change in elevation angle; maxD4; in �): sign(4(tmax) -4(0)) Xmax(|4(t) -4(0)|), where sign(4(t)

- 4(0)) means the sign of 4 at each frame during ‘protraction touch’ at time tminus 4 at touch onset, and tmax means the time

point t where |4(t) - 4(0)| was at the maximum. The value can be either positive (when whisker went up) or negative (when

whisker went down). We first calculated the absolute value of difference between 4 at each frame and touch onset. Then

we took the maximum absolute value multiplied by its corresponding sign.

9. Horizontal bending (maximumchange in horizontal curvature; maxDkH; inmm-1):max(kH(t) - kH (0)). Values are negative during

‘protraction touch’, with rare exceptions.

10. Vertical bending (maximum change in vertical curvature; maxDkV; in mm-1): sign(kV(tmax) - kV(0)) X max(| kV(t) - kV(0)|). Values

can be both positive and negative.

11. Slide distance (distance slid along the object during a protracting whisk; in mm): Travel distance along the object from the

onset of touch to the peak of the protraction whisking during each ‘protraction touch’. The onset of touch is defined at

each protraction touch.

12. Touch duration (time spent touching object during a protracting whisk; in s): Duration of each ‘protraction touch’.

Whisker feature analysis – GLM
We built either binomial (for choice and 2-angle prediction) or multinomial (7-angle prediction) generalized linear model (GLM) with

lasso regularization (0.95 alpha of elastic-net, to make the model behave similarly to lasso while preventing wild behavior with if input

variables are highly correlated; Friedman et al., 2010; Runyan et al., 2017), using standardized 12 whisker features as input param-

eters and either choice or object angle as the target. We used the MATLAB version of glmnet (Friedman et al., 2010). For each ses-

sion, the model was trained on 70% of randomly selected trials. Training data was stratified based on target feature (choice or object

angle). The regularization parameter of the elastic-net was calculated in 5-fold cross-validation, and the model performance was

tested in the remaining 30% of trials.

We iterated this procedure 10 times to reduce errors from random assignment in the training set (reasoning and validation of this

iteration are noted in the calcium imaging analysis section below). We averaged coefficients from 10 iterations for the final model.

For binomial models, we usedMatthew’s correlation coefficient (MCC) as a performance measure to prevent effects from unequal

samples (Figure 8D). For multinomial models (Figures 2D and 3E), the performance was measured by the averaged correct rate of

prediction across object angles after bootstrapping (sampling with replacement) 100 samples per presented object angle. We aver-

aged performance from 10,000 bootstrapping per mouse, and calculated shuffled data performance from bootstrapping after

randomly permuting presented object angles (average from 10,000 processes). Differences between presented and predicted object

angles were calculated from the same bootstrapping and shuffled data (Figure 2F).

Whisker feature analysis - Feature importance
We calculated variable importance by comparing ‘leave-one-out’ models to the ‘full model’. A ‘full model’ is a GLM using all 12 fea-

tures. From this trained ‘full model’, removing one feature without retraining (equivalently, setting the corresponding coefficient to 0)

results in a ‘leave-one-out’ model. When comparing ‘leave-out-out’ models to the ‘full model’, we used fraction deviance explained

(%DE; Agresti, 2013), a generalized version of fraction variance explained for exponential family regression models. The reduction in

%DE in each ‘leave-one-out’ model from the ‘full model’ is defined as feature importance. A feature that leads to larger reduction in%
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DE has higher impact on the ‘full model’ compared to the ones that lead to smaller reduction. This method is similar to methods of

shuffling each feature in the trainedmodel (Breiman, 2001a, 2001b; Fisher et al., 2019), but prevents randomeffects of shufflingwhich

can lead to enhanced false negative results. The overall results were not affected by changing the model approach from feature

removal to feature shuffling.

Two-photon microscopy
We used a two-photon microscope (Neurolabware) which consists of a Pockels cell (350-105-02 KD*P EO modulator, Conoptics), a

galvanometer scanner (6215H, Cambridge Technology), a resonant scanner (CRS8, Cambridge Technology), an objective (W Plan-

Apochromat 203/1.0, Zeiss), a 510 nm emission filter (FF01-510/84-50, Semrock), and a GaAsP photomultiplier tube (H10770B-40,

Hamamatsu). We used 80 MHz 940 nm laser (Insight DS+, Spectra-Physics) for GCaMP6s excitation. The scope was controlled by a

MATLAB-based software Scanbox with custom modifications. In each session, we took interleaved volumetric calcium imaging to

cover L2/3 to L4 (100–450 mm from pia), using an electrically tunable lens (ETL; EL-10-30-TC-NIR-12D, Optotune). Each volumetric

imaging consisted of 4 planes, either 44 or 53 mm apart, spanning 131 (4 mice) or 165 mm (8 mice), respectively. Resulting imaging

frequency was 6.07 (4 mice) or 7.72 (8 mice) volumes per second depending on the size of the FOV (650 3 796 or 512 3 796). Pixel

resolution was either 0.7 (4 mice) or 0.82 mm (8 mice) per pixel. Laser power was controlled at each plane respectively. Every 5 trials,

we alternated the objective position to cover another volume. Average power after the objective was about 70 mW for upper volume

and 150 mW for lower volume. To further reduce heating (Podgorski and Ranganathan, 2016), we blanked the laser between trials

with inter-trial interval of 3 s, which resulted in average duty cycle of about 60%.

To confirm C2 location, we imaged at around 400 mm depth while stimulating the C2 whisker using a piezo actuator in mice anes-

thetized with 0.7%–1.0% isoflurane. Stimulation consisted of 4 s of 5 Hz, with inter-trial interval of 10 s. Subtracting averaged

GCaMP6s signal during baseline (3 s before stimulation) from that during stimulation gave a clear C2 region.

Imaging data processing
Weused Suite2p (Pachitariu et al., 2017) for cell region-of-interest (ROI) selection and calcium trace extraction, andMLspike (Deneux

et al., 2016) for spike deconvolution. Neuropil signal was subtracted by a lower value between the coefficients of 0.7 or minimum

value of soma signal divided by neuropil signal, to prevent negative signal (Pluta et al., 2017). Baseline fluorescence (F0) was calcu-

lated by the 5th percentile of 100 s of rolling window (600-780 frames over about 8000 frames in total; Sofroniew et al., 2015). Active

cells were further classified as those having 95th percentile of DF/F0 larger than 0.3. One action potential value for MLspike was set to

0.3 aswell (Chen et al., 2013; Sofroniew et al., 2015). NoROI which had neuron-likemorphology and at least 1 observed inferred spike

failed to pass this activity criteria. The noise parameter for MLspike was calculated as a standard deviation of a ’no signal’ period. ‘No

signal’ periods were reconstructed from concatenating 5-frames sliding windows having standard deviation less than 5th percentile

from the session, allowing overlap.

For analyzing imaging data from passive whisker deflection experiments under light anesthesia (Figure 5), we used DF/F0 for anal-

ysis because there were no confounding effects from behavior. In this case, F0 was calculated as a median of 10 s rolling window.

ROIs were manually selected based on morphology and fluorescence traces calculated by Suite2p.

GLM for neuronal activity - ‘Object model’
We used Poisson GLM with lasso regularization (elastic net with 0.95 alpha) to fit inferred spikes of each neuron using 5 classes of

behavior (Figure 3A). The definitions, calculation methods, and reasoning of parameter setting of these classes are as follows:

1. Touch: We used a binary vector of touch frames as touch parameter. Touch is further divided into 8 groups – 7 for each angle

and 1 for all angles. This input (predictor) had 0-2 frame delays. Includingmore than 2 delays did not improve the fitting. Positive

delay means spike events followed touch events. A model using binary touch performed better at fitting than using touch dura-

tion or touch count in each frame. Total number of touch predictors was 8 3 3 = 24.

2. Whisking: We used 3 parameters for whisking – number of whisks, whisking amplitude, and midpoint (Figure S3A, right bot-

tom). Amplitude is defined by q span within a whisking cycle, and midpoint is defined by the center value within a whisking

cycle. These were quantified by Hilbert decomposition of whisker azimuthal angle at base (q) with a 6-30 Hz band-pass filter

(Hill et al., 2011). Eachwhisking period was divided by time points where the phase changed from >3 (end of the previous cycle)

to <�3 (start of the next cycle; phase can range from -p to p). We considered active whisking only whenmax(q) –min(q) within

each whisking period was larger than 2.5� (Severson et al., 2017). Amplitude and midpoint were averaged in each frame. This

input had �2 to 4 delays. Negative delay means spike events precede whisking events. This could conceivably happen from

efference copy of motor signal from M1 (Hill et al., 2011; Petreanu et al., 2012). Total number of whisking predictors was 3 3

7 = 21.

3. Licking:We used number of licks on each side as licking parameters. Dividing into lick onset and offset (Allen et al., 2017; Chen

et al., 2016) or binarizing lick bouts (Pho et al., 2018) did not perform better than number of licks alone. Delays were �2 to 1

frames, resulting in 2 3 4 = 8 predictors.

4. Sound: There were three sources of salient sound in our behavior task set up – a piezo beep at the beginning of each trial, and

the pneumatic valve controlling pole presenting slider during both presenting and retracting. We observed that only the pole
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presenting sound cue resulted in significant impact on model fitting. Delays were 0 to 3 frames, resulting in 4 predictors.

5. Reward: We used binary vector of whether a reward was given on left or right lick port. Delays were 0 to 4 frames, resulting in 2

3 5 = 10 predictors.

At each session, 70% of trials were randomly selected for training, the regularization parameter was calculated from 5-fold cross-

validation, and fitting was tested in the remaining 30% of trials. Training data was stratified based on touch, choice, angle of the ob-

ject, and the total number of spikes in each trial. Data was standardized before dividing into training and test sets.

We repeated this procedure 10 times, and used averaged coefficients as the final model. This was because the response is sparse

in the barrel cortex, evenmorewhen using calcium signal as the proxy of neuronal activity (Huang et al., 2020), and randomization can

result in false negatives. Averaging coefficients from multiple iterations is equivalent to cross-validation, and it may result in overfit-

ting. However, we found this method was more conservative (when used with threshold of %DE 0.1) than using the statistical test

from chi-2 distribution of deviance (Agresti, 2013) or the Akaike information criterion.

We used %DE as the measure of fitting (Agresti, 2013). Distribution of %DE was similar to that of auditory cortex or posterior pa-

rietal cortex of mice during an auditory spatial localization task (Figure S3B; Runyan et al., 2017). Threshold of being fit was set to 0.1

(Figure S3B; Runyan et al., 2017), which roughly corresponded to a correlation coefficient of 0.2. This threshold resulted in relatively

consistent results from multiple iterations and in similar proportion of touch neurons compared to a previous report (Peron

et al., 2015).

First, we decided if a neuronal activity was fit using 5 classes of event during the task – touch, whisking, licking, sound cue, and

reward. If%DEwas larger than 0.1, then it was defined fit. This suggested that this set of 5 event classes could explain inferred spikes

well. Then, the predictive classes were defined within fit neurons by the ‘leave-one-out’ method. We removed each group of predic-

tors (e.g., all 24 predictors of ‘touch’) from the ‘object model’ without retraining (equivalent of setting all coefficients corresponding to

this group of predictors to 0), and calculated%DE. If %DEwas reduced more than the threshold (0.1) from that of the ‘object model’,

then that removed behavioral class was assigned to the neuron. We note that this method depends on the distribution of input pa-

rameters, and may be specific to the current task structure. Each fit neuron could be assigned to one or more classes, or no class at

all (Figure 3B).

Object-angle tuning calculation
We used analysis of variance (ANOVA) with shuffling methods to calculate object-angle tuning at touch. We analyzed touch-respon-

sive neurons only. Touch frames were defined as the frames when touch occurred, with delays of 0 and 1 frames to capture delayed

calcium response to touch. We considered frames before the answer lick only, to prevent contamination from behavioral outcome

(i.e., water reward.). We defined the response as the number of inferred spikes per touch in each trial. We quantified the response by

subtracting the mean number of inferred spikes during baseline (before pole up) from the total number of inferred spikes in all touch

frames, and then dividing by the number of touches within the trial. We grouped responses into each object angle, and ran ANOVA. If

the resulting p value was lower than 0.05, at least one bin was significantly different from 0, and at least one pair of bins had signif-

icantly different responses after post hoc analysis (Tukey’s honestly significant difference), it passed the first round. Among these

neurons, we compared F-statistics (between-group variance / within-group variance) of 10,000 shuffled object angles to that of orig-

inal data. If more than 5% of them (i.e., 500) had F-statistics larger than the original, then we defined those neurons to be not tuned.

This second process was to prevent false positive errors, where randomly assigning touch responses into 7 bins could result in sta-

tistically uneven distribution.

We further considered possible confounding effects from responses to other categories of behavior by calculating angle tuning on

neuronal activities reconstructed from the ‘object model’ (Figures S3D and S3E). We first confirmed that full object models recapit-

ulate object-angle tuning, by applying ANOVA and shufflingmethods described above. Thus, we could use objectmodels to evaluate

the role of each parameter in constructing object-angle tuning. Specifically, we applied the same methods on the neuronal activities

reconstructed from touch parameters only, and confirmed that object-angle tuning did not result from responses to other categories

of behavior, such as whisking and licking.

We defined angle selectivity asmax(response) –mean(other 6 responses). We did not normalize this subtraction for two reasons: 1)

we do not know true baseline firing rate, and 2) becausemean responses across neurons were highly variable, leading to bias toward

low response neurons with higher angle selectivity if normalized.

Cortical depth estimation
To compare object-angle tuning (Figures 3F and 3G) and whisker feature combination (Figure S4E) between L2/3 and L4, we first

estimated the boundary depth between L2/3 and L4 using L4-specific expression of GCaMP6s (AAV-Flex-GCaMP6s injection to

Scnn1a-Cre mice). We used septa (gap between barrels) contrast as the indication of L4. First we identified septa at around

400 mm depth, drew lines across multiple septa, and calculated the contrast (standard deviation of intensity across the lines) across

depth. We estimated L2/3-L4 boundary as the starting point of this contrast, which was at around 350 mm.

Before each imaging session, dura was identified from autofluorescence and set to 0 mm.Depth of each imaging plane was recorded

by themovement of the objective along the rotation angle of 35�. Imaging plane tilt angle of the cranial window relative to the object lens

was approximated in each mouse using dura imaging. The boundary of dura was detected from the planes of 2 mm interval z stack
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imaging, from where no significant fluorescence could be detected to where the whole FOV was under the dura. Using this dura esti-

mation across depth, we calculated imaging plane tilt angle by averaging the slope of dura depth in x and y directions. Each neuron’s

depth was calculated based on its x-y position by applying this imaging plane tilt angle to the depth of corresponding imaging planes.

Neurons residing deeper than 350 mm were defined as L4 neurons, and shallower than 350 mm as L2/3 neurons.

GLM for neuronal activity - ‘Whisker model’
To investigate the impact of each of the 12 whisker features in angle tuning, we built Poisson GLMs with lasso regression to fit each

neuron’s inferred spikes using whisker features. In this model, we used 5 behavioral categories as in the ‘object model’, except that

we swapped touch components with whisker feature components. Of 12 whisker features listed above, we averaged at touch fea-

tures (except for touch counts), and summed during touch features, in each frame. The difference was because during touch features

were calculated as changes. Averaging all whisker features except touch counts resulted in no significant differences in the result.

Each feature had 0 to 2 delays as in touch in the object model, resulting in 36 input parameters in total. We used ‘leave-one-out’

models to calculate the importance of each whisker feature on fitting the session-wide neuronal activity (Figures 8G and S8B).

We calculated angle tuning from ‘whisker model’ (Figure 4B) in the same manner as angle tuning using inferred spikes. We first

confirmed that ‘whisker-only model’ (removing input parameters of other categories of behaviors from the full ‘whisker model’)

had negligible effect on angle tuning curve (Figure S4B). Further analyses were performed on this ‘whisker-only model’ (Figures 4,

8, S4, and S8). To calculate the impact of each whisker feature on angle tuning curve, we removed each feature (3 input parameters)

from the ‘whisker-only model’, calculated angle tuning curve, and then measured the correlation with the angle tuning curve from

inferred spikes (Figure 4B). Reduction in this correlation value compared to that from the whisker-only model was defined as impact

on angle tuning (Figure 4B).

Passive whisker deflection under anesthesia
To identify the C2 barrel column and to compare passive whisker deflection response to active tactile responses (Figure 5), we de-

flected C2 whisker for 4 s at 5 Hz (20 deflections per trial) using a glass capillary attached to a stripe piezo actuator (APC International

Ltd., PA, USA) controlled by a piezo driver (A-301, A.A. Lab Systems Ltd., Israel). The driver was controlled and synched with a

whisker monitoring camera using BControl, Ephus software (Suter et al., 2010), and Arduino. The tip of the glass capillary was posi-

tioned at �2 mm away from the whisker base. Whisker tracking during passive deflection showed that deflection cycles resembled

square waves of 85ms trough duration, 15ms of deflection (amplitude of 15�, 1150�/s), 85ms peak duration, and 15ms of return. We

deflected the whisker at the angular direction of 0� (backward) to 315� in 45� steps (Figure 5), 10 trials per angle per volume (total 160

trials per session). Each trial lasted for 10 s, typically consisting of 1-3 s baseline, 4 s stimulation, and 3-5 s post-stimulation. Inter-

trial-interval was at least 3 s, during which the imaging laser was blocked to reduce heating.

All passive deflection experiments were performed under light anesthesia (0.5%–0.8% isoflurane). Body temperature was moni-

tored and controlled using a thermal blanket (Harvard apparatus). Depth of anesthesia wasmonitored bywhiskermovement (forward

stretched whiskers indicating too low anesthesia depth) and breathing rate (lower than �60 bpm with gagging indicating too high

anesthesia depth).

Passive whisker deflection response analysis
WeusedCircStat, aMATLAB toolbox for circular statistics (Berens, 2009), for calculating the vector sumofmean neuronal responses

to 8 angular deflections. Confidence intervals were calculated using the distribution from 10,000 sets of bootstrapped data (sampling

with replacement). Random probability was calculated by 10,000 sets of shuffled data, where mean tuned angle (direction of vector

sum) was shuffled while keeping object-angle tuning the same.

Matching planes across sessions (Figure S6)
To match two-photon imaging volume-of-views across training, we compared spatial correlation between multiple depths to a refer-

ence image before each experiment session. We matched the top FOV of each imaging volume (2 per mouse). Reference images

were from the first awake experimental session (Figure S6A). Before each experimental session, we first roughly matched the

area following surface vasculature, and the cortical depth from the dura. Then, we applied a two-step automatic search (Figures

S6B–S6D). First, we took 10 s images from 10 planes separated by 10 mm around the roughly matched depth (Figure S6B). Images

were registered using 2-dimensional Fourier transform (Scanbox, Neurolabware), and then the mean images were again registered

with the reference image based on intensity (MATLAB imregister function). We calculated spatial correlation from each of these 10

registered mean images with the reference image, and plotted them against depth (Figure S6D; open circles). We then started the

second step from the depth where the correlation value was the highest (arrow on the top of Figure S6D), and after adjusting x-y po-

sition according to the intensity-based registration. We iterated the abovemethods using a 2-mm interval (Figures S6C and S6D; filled

circles). Finally, matching depth was estimated from the peak of a smoothed curve of these spatial correlation values (Figure S6D,

arrow at the bottom).

Matching the depth of imaging plane is critical in quantifying number of neurons being silent (Figures 6A and S7A–S7C), because a

neuron could have simply been missed from the imaged plane on the other session. To calculate the probability of missing a neuron

out of imaging plane, we quantified depth range in detecting single cells and relative difference of imaging plane depths across
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sessions (before and after learning; naive and expert 7-angle test sessions). Probability of missing a neuron can then be calculated as

depth difference divided by depth range.

To quantify the range of depth that single cells could be detected over, we used rare cases of chronically fluorescent neurons while

taking z stack images (3 neurons out of 12 mice; Figure S6E). By visual inspection from 2-mm interval z stack images, we estimated

this depth range as ± 20 mmaround themidpoint of the cell. This relatively wide rangemay be due to under-filling the objective’s back

aperture, whichwe implemented to reduce scattering and increase signal-to-noise ratio when imaging deeper cortical depths (Kondo

et al., 2017).

The relative difference of imaging plane depthswas calculated similar to processes described above (Figure S6D), using a template

z stack imaging of each mouse. Across imaging planes, the depth difference was 3.2 ± 3.8 mm (mean ± SD; Figure S6F). Thus, the

probability of missing a neuron was about 3.2/40 = 0.08, assuming equal cell detectability across the range (Figure S6E). This is much

lower than the proportion of neurons which became silent or active in expert sessions (Figures 6B, S6F, and S7A–S7C).

We validated this GCaMP based approachwith tdTomato. One of 4mice expressing tdTomato in the nucleus of excitatory neurons

reached expert performance. The depth difference estimation was similar between the tdTomato-expressing mouse and GCaMP6s-

only mice (Figure S6F). Furthermore, the tdTomato-expressing mouse had similar neuron disappearing and appearing rates when

compared to other GCaMP6s-only mice (Figure S6F). This result, along with the low probability of missing a neuron in ourmicroscope

system across sessions (Figure S6E) and the similarity with previous reports (Chen et al., 2015; Gonzalez et al., 2019; Ziv et al., 2013),

supports that variability in plane matching across paired sessions had an acceptably small impact on quantifying ensemble turn-

over rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using MATLAB. When comparing mouse-averaged mean values between naive and expert

sessions (n = 6), we used either paired 2-tailed t test or Wilcoxon rank test, depending on Lilliefors normality test with a threshold at

0.05. When comparing values between pooled neurons from naive and expert sessions (Figures 8G and 8H), we used paired 2-tailed

t test. We did not correct for family-wise error rate. All data were presented in mean ± SEM except for those noted

otherwise. P values were shown up to 2 decimal places when larger than or equal to 0.05. In other cases, p values were presented

as * for < 0.05, ** for < 0.01, and *** for < 0.001.
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